Comprehensive Analysis of NGS Data from PARABON® NANOLABS Modern and Ancient DNA with Parabon Fx[™]

Ellen Greytak, PhD*; Janet Cady, PhD; and Steven Armentrout, PhD

Cross-Kit STR Sequence-Based Identity & Kinship

Parabon NanoLabs, Inc.

*Correspondence to: ellen@parabon.com

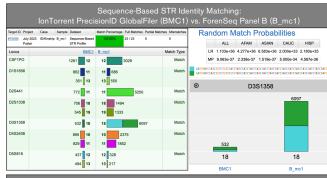
Forensic Analysis Platform

Introduction

Next-generation sequencing (NGS) (also known as massively parallel sequencing, MPS) has greatly expanded the range of analyses that can be performed on forensic samples, while still producing lengthbased STR profiles compatible with legacy capillary electrophoresis profiles. However, software systems provided by the NGS kit manufacturers are limited to a single NGS platform and lack many tools that practitioners regularly need, impeding both casework and research. Parabon's Fx[™] Forensic Analysis Platform is designed to address this challenge by providing a single, secure, user-friendly interface to dozens of tools to analyze and compare NGS data from multiple sequencing platforms, while also enabling easy access to raw data and intermediate analysis files. This poster demonstrates some of the many analyses that can be performed in Fx and shows screenshots of how the results are displayed. Fx includes tutorials and detailed write-ups of how each tool works and how the results can be interpreted.

STR Mixture Deconvolution

- STR mixtures can be deconvoluted in Fx using length-based or sequence-based alleles (uses EuroForMix continuous model¹)
- User specifies number of contributors and known contributors (if any) under each hypothesis
- Produces deconvoluted genotypes with log likelihood ratios (LLRs)
- Calculates weight-ofevidence for statistical assessment
- Performs optional noncontributor analysis



- 12 13 14 15 16
- Likelihood Log Likelihoo (ATCT)12 Unknown 3.18e-302 -694.225 (ATCT)13 6.05e-297 -682.067 Under Ho (ATCT)14 Unknown Ratio 191000 5.28 (ATCT)15 Unassigned (ATCT)5ATGT(ATCT)1 TCT|5ATGT(ATCT)1 Non-contributor ecdf of 1000 LR samples itor 1 – 17 a B mc3 10 3701 Shifter

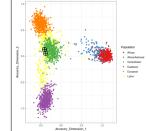
Contributor 1 actual genotype: (ATCT)12 / (ATCT)5 ATGT (ATCT)11

17

- Each NGS kit targets a slightly different region around each STR → sequence alleles differ in flanking SNPs
 - Fx cross-kit analysis trims sequence alleles to the overlapping region and uses population allele frequencies trimmed to that same region
 - Identity matching (RMP) or parentage/sibship (LR vs. unrelated)

G Sibship Results from Sequence-Based STR Profile

SNP Ancestry

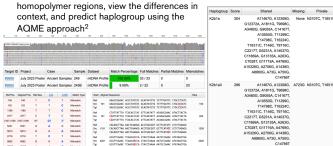

Fx uses principal components analysis (PCA), Admixture, & FrogKB population likelihoods to infer ancestry from SNPs (e.g. ForenSegB, PrecisionID Ancestry)

Kachari

Guiarati(GIH)

Sri Lankan Tamil

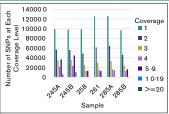
- Samples that would be called as "Admixed American" by other tools can be distinguished as Central/South Asian vs. Admixed Asian/European vs. Latino
 - Global Ancestry Analysis Global Ancestry Analysis The table below lists the proc



Population Likelihood Analysis The table below sh Population

	Region	Genotype Probability	Population	Region	Genotype Probability
	Asia	2.4545e-15	Chuvash	Europe	1.1131e-19
	Asia	8.6251e-16	Kazak	Asia	9.0712e-20
I(STU)	Asia	4.0454e-16	Qinghai_Tibetans	Asia	3.6840e-20

Mitochondrial DNA Analysis


- · Automatic detection of sequenced region; custom flat or per-site error rates
- · View the alignment in the chromosome browser, perform string- or haplotypebased lineage matching with or without including heteroplasmy and

Distant Kinship from Low-Coverage Sequencing

- Distant kinship can be inferred in Fx even from low-coverage SNP capture or WGS data: calculates LLR of data under different relationship hypotheses vs. unrelated hypothesis
- FASTQ files downloaded for 6 ancient French individuals (4850-4500 BC) with known pedigree³
- Sequencing coverage is too low for direct genotype calling: <1.5% of SNPs have ≥10X coverage
- Genotype likelihoods calculated for 94,752 SNPs and used for extended kinship out to 4th degree4 in Fx
- Determined mtDNA & Y (using Yleaf approach⁵) haplogroups in Fx

)			Imt	H1+T152C	20	61	G2a2b2a1	Y			F Ve
	K1b1a	24	5B	G2a2b2a1	,				l		1
24	5A	G2a2b2a	K2b1a	2	58	G2a2b2a1	K1a2	28	5A	G2a2b2a1a	2
bility e-19 e-20							K2b1a	28	5B	32a2b2a1a	

Actual	245A	245B	258	261	285A
246B	Parent-Child (PC)				
258	Full Siblings	PC			
261	Grand-parent (GP)	PC	GP		
285A	First cousin (1C)	Avuncular	1C	GP	
286B	1C once- removed (1C1R)	Great- avuncular	1C1R	Great-GP	PC

Predicted Log Likelihood Ratio (LLR) ve. Unrelated	245A	245B	258	261	285A
245B	1073.14				
258	577.85	722.34			
261	261.29	809.03	130.08		
285A	82.39	255.76	56.11	211.86	
285B	26.61	79.13	20.77	66.87	633.14

¹ Bleka, et al. (2016), EuroForMix: An open source software based of a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Science International: Genetics, 21 35-44

Sturk-Andreaggi, et al. (2017). AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. FSI: Genetics, 31

³ Rivollat, et al. (2023). Extensive pedigrees reveal the social organization of a Neolithic community. Nature, 620, 600-606

⁴ Gorden, Greytak, et al. (2022). Extended kinship analysis of historical remains using SNP capture. FSI: Genetics, 57, 102636. ⁵ Ralf, et al. (2018). Yleaf: Software for Human Y-Chromosoma Haplogroup Inference from Next-Generation Sequencing Data. Mo. Rial Eval 35(5) 1291-1294